AMILab mainly focuses on the following research agenda:

* Machine perception understanding 
* Multi-modal learning
* Video (visual and temporal) understanding 
* 3D perception understanding 
* Data efficient learning 
* Prior based learning and inference
* Minimal-supervised learning
* Learning with human-in-the-loop

We believe that, in order to achieve Artificial Generic Intelligence, Sensing and Efficient learning are the most important fundamental blocks.
We are working toward developing machine perception capability by understanding human perception capability;
thereby, the intelligent agent can efficiently learn to understand real-world.

Other than this, AMILab members have broad research interests in computer vision & machine learning.
In particular, we put a high priority on the research that connects human and machine, i.e., human centric research.

Lastly, we are interested in the following general topics as well.

* Deep neural networks
* Invariant representation learning
* Low-rank & sparse structure and related optimization techniques including compressed sensing

but not limited to.